Commutative ideal theory without finiteness conditions: Primal ideals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative Ideal Theory without Finiteness Conditions: Primal Ideals

Our goal is to establish an efficient decomposition of an ideal A of a commutative ring R as an intersection of primal ideals. We prove the existence of a canonical primal decomposition: A = ⋂ P∈XA A(P ), where the A(P ) are isolated components of A that are primal ideals having distinct and incomparable adjoint primes P . For this purpose we define the set Ass(A) of associated primes of the id...

متن کامل

Commutative Ideal Theory without Finiteness Conditions: Completely Irreducible Ideals

An ideal of a ring is completely irreducible if it is not the intersection of any set of proper overideals. We investigate the structure of completely irrreducible ideals in a commutative ring without finiteness conditions. It is known that every ideal of a ring is an intersection of completely irreducible ideals. We characterize in several ways those ideals that admit a representation as an ir...

متن کامل

Commutative Ideal Theory without Finiteness Conditions: Irreducibility in the Quotient Field

Let R be an integral domain and let Q denote the quotient field of R. We investigate the structure of R-submodules of Q that are Q-irreducible, or completely Q-irreducible. One of our goals is to describe the integral domains that admit a completely Q-irreducible ideal, or a nonzero Q-irreducible ideal. If R has a nonzero finitely generated Q-irreducible ideal, then R is quasilocal. If R is int...

متن کامل

On Primal and Weakly Primal Ideals over Commutative Semirings

Since the theory of ideals plays an important role in the theory of semirings, in this paper we will make an intensive study of the notions of primal and weakly primal ideals in commutative semirings with an identity 1. It is shown that these notions inherit most of the essential properties of the primal and weakly primal ideals of a commutative ring with non-zero identity. Also, the relationsh...

متن کامل

Primal Ideals and Isolated Components

Introduction. L. Fuchs [2 ] has given for Noetherian rings a theory of the representation of an ideal as an intersection of primal ideals, the theory being in many ways analogous to the classical Noether theory. An ideal Q is primal if the elements not prime to Q form an ideal, necessarily prime, called the adjoint of Q. Primary ideals are necessarily primal, but not conversely. Analogous resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2004

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-04-03583-4